Denyer, CO

ASCEND

Unlocking Sierra's REST APlIs

Practical Python Projects for Libraries

https://chimpy.me/iug2025

Jeremy Goldstein - Minuteman Library Network

Ray Voelker - Cincinnati & Hamilton County Public Library

https://chimpy.me/iug2025

Meet Jeremy and Ray

Interacting with / Consuming Sierra Data

Sierra Data Feature — Sierra SQL

Criteria |

Access Method

Permissions

Direct database access
using a PostgreSQL
compatible client (typically
via TCP/IP port 1032).
Username and password
required for authentication.

Full read-only access to all
SQL views — no options to
limit or prevent access to
table views for clients with a
valid login.

Sierra REST APlIs

HTTP-based access through
predefined APl endpoints;
requires no additional
network configuration
(typically via TCP/IP port
443 — the same port used by
the WebPAC). Access Token
required.

Fine-grained permissions for
Create, Read, Update, and
Delete (CRUD) operations.
API keys can be created
with limited roles (Bibs
Read, Items Write, etc).

Sierra Desktop
Application (SDA) /
Create Lists

Access via the Sierra
Desktop Application (SDA)
interface, installed locally on
the user's workstation.
Account credentials needed.

Permissions are based on
user roles and workflows
defined within the SDA
interface.

Interacting with / Consuming Sierra Data (Cont'd)

Sierra Data Feature — @ Sierra SQL Sierra REST APIs Sierra SDA / Create
. Lists

Criteria |

Available Data Current snapshot of all Current snapshot of all Current snapshot of all
record types. Transaction record types-some only record types-indirect current
data per local policy. accessible via pagination. transaction data when
System config and user Current checkout/hold/fine associated with a record
information. transactions

Query Method SQL — Good ol SQL JSON (Query endpoint not Boolean and JSON.

available for all data points)
and HTTP query
parameters.

Interacting with / Consuming Sierra Data (Cont'd)

Sierra Data Feature — Sierra SQL
Criteria |

Learning Curve / Steep, but manageable

Audience learning curve for
non-technical users.

Flexibility / Highly flexible for reading

Primary Strengths data and creating custom

reports—custom queries,
complex joins, aggregations,
and data manipulation
tailored to specific needs
and data-analysis related
tasks.

Sierra REST APlIs

Moderate learning curve for
developers.

Highly flexible for defined
CRUD operations—provides
a limited set of endpoints
that are well-suited to
operations involving record
creation, updates and
deletion (e.g. less access to
data compared to SQL and
the SDA)

Sierra Desktop
Application (SDA) /
Create Lists

Minimal learning curve for
library staff.

Limited flexibility—offers no
options for integration and
automation tasks (with the
exception of scheduler).
Suited to tasks involving
smaller, more manageable
datasets.

Getting started: Swagger Ul
© sierra ar

bibs he B 1 Show/Hide List Operations = Expand Operations = Raw
N6/bibs/ Create a Bib record
N6/bibs/ Get a list of bibs
/v6/bibs/marc Delete expired MARC data files
m /6/bibs/marc Generate a binary MARC data file of bibs
/v6/bibs/metadata Get a list of metadata
N6/bibs/query Filter the records by a query in JSON format
/6/bibs/search Find bib information using AWS search by author, title, or keyword
/v6/bibs/{id} Delete a bib by record ID
/v6/bibs/{id} Get a bib by record ID

N6/bibs/{id}

3 /v6/bibs/{id}/marc Get the MARC data for a single bib record

Swagger Ul (Cont'd)

The screenshot on the right displays
the Swagger Ul and the Response
Body for the GET Request on the
items/{id} endpoint.

Notes on Parameters:

Path Parameters: Specify resources within
the API — part of the URL path:
items/3000028

Query Parameters: Provide additional details
or options for the request — part of the URL

after ?:
items/3000028?fields=default

Body Parameters: The body param isn’t
used for this endpoint, but it's often used in
POST and PUT operations.

Parameters

Parameter Value Description Parameter Type Data Type
id 3000028 the item record ID path string
fields default a comma-delimited list of fields query array

to retrieve

‘ Try it outt Hide Response

Request URL

https://classic.cincinnatilibrary.org:443/iii/sierra-api/v6/items/3000028?fields=default

Response Body

{
"id": "3000028",
"updatedDate": "2019-02-19T18:11:12Z",
"createdDate": "2012-06-30T00:20:56Z",
"deleted": false,
"bibIds": [

"1000001"

1

"location": {

"code": "11j",

"name": "Main Children's Library Stacks"
}
"status": {

Ycode n M=t

"display": "CHECK SHELVES"
}
"volumes": [],

"barcode": "A000000O348011",

"callNumber": "001.944 G232, 1991"
)

Response Code

200

J Parameters
Wa g g e r O n Parameter Value Description Parameter Type Data Type

offset 0 the beginning record (zero- query integer
h indexed) of the result set
returned

limit 1000 the maximum number of query integer
- results

A POST Request on the items/query s { a query insONformat see by s

"target": { the Sierra API reference

endpoint is shown on the right as it TR e docmeaon o mr
appears in the Swagger Ul. o rees

e’ {
"op": "greater_than_or_equal”,
"operands": [

The field labeled “json” represents the o

b
}

bOdy Param Of the POST requeSt. ThiS Parametercontenttype:\application/json V[7
is often referred to as the payload, or e o
simply JSON, in many HTTP clients. Request URL

https://library.minlib.net:443/iii/sierra-api/v6/items/query?offset=0&81imit=1000

Response Body

{
"total": 1@ee,
"start": o,
“entries": [
{
"link": "https://library.minlib.net/iii/sierra-api/v6/items/19720461"
b

"link": “"https://library.minlib.net/iii/sierra-api/v6/items/19720462"

"link": “https://library.minlib.net/iii/sierra-api/v6/items/19720463"

"link™: "https://library.minlib.net/iii/sierra-api/v6/items/19720464"

b

Swagger Ul (Cont'd)

A POST Request on the items/query
endpoint is shown on the right as it
appears in the Swagger Ul.

The field labeled “json” represents the
body param of the POST request. This
is often referred to as the payload, or
simply JSON, in many HTTP clients.

For this i tems/query endpoint, the
JSON may be retrieved from the Sierra
Create Lists Function. By viewing the
Boolean Search feature of a list, the tab
labeled “JSON” will provide the
payload required by this endpoint.

Review File Name:
Store Record Type: ITEM i v
Range v Start 110000008 Stop i
I Classic I Classic
Enhanced
JSON Ter.. Operator Type Field Condition Value A Value B
1 ITEM Created Da... greater tha... 02-26-2025

ITEM Created Date greater than or equal to "02-26-2025"

@ Use Existing Search] Retrieve Saved Query @

Review File Name:
Store Record Type: ITEM i >

Range WA Start 110000008 Stop it

“target™: |

"id®: 83

"02-2€-2025",

Boolean Search

Swagger Ul (Cont'd)

/v6/items/checkouts/{barcode} Check-in an item (returns to the library)
A Delete Request on the Resporise Cliss
items/checkouts{barcode] Model
endpoint is shown on the right as it s RS
appears in the Swagger Ul. il

name (string): the error name,
description (string, optional): the error description

Barcode is included as a required path

pa ram ete r Response Content Type | application/json v |
Parameters

username and statgroup are optional =~ = e pe o etamee

qu ery p aram et erS barcode |55555555555555 | the Item barcode path string
username actcirc username to check query string

the item in with
Use delete endpoints with caution as e | b R
. . aggn it out! Hide Response
they lack confirmations and submitting (e] |
a valid request will delete the entry i

https://library.minlib.net:443/iii/sierra-api/v6/items/checkouts/55555555555555username=actcirc&statgroup=111

immediately

Swagger Ul (Cont'd)

Parameters
Parameter Value Description %%zmete' Data Type
Accept- [| the Accept-Language header string
A PUT Request on the o R _
1 58538307 the hold record 1D path integer
patrons/holds/{holdId} endpoint .., - T e okl ¥ ealeotd. By el
is shown on the right as it appears in e PatronHoldpus

}

the Swagger UI. i

Parameter content type:) applicationfjson v |

holdID is included as a required path
parameter [Ty kout |

Request URL

https://library.minlib.net:443/iii/sierra-api/v6/patrons/holds/58538387

The body represents a patch object,
containing information that will overwrite
the data in the existing record if the APl ¢~
is successful i

"httpStatus": 403,

Response Body

"name": "WebPAC Error”,

"description”: "This hold can not be frozen."

In this instance the hold cannot be)
frozen, thus a Response Code of 403 ..o coce
is returned along with an error message =«

in the Response Body

pickupLocation (string,
optional): the hold's pickup
location code,

freeze (boolean, optional):
whether the hold should be
frozen (suspended)

sierra-ils-utils
github.com/chimpy-me/sierra-ils-utils
A Python library designed to simplify

working with the Sierra REST APIs. # Secrets can be securely stored within Colab
from google.colab import userdata

Ipip install sierra-ils-utils --quiet

Automates:
e Authentication
e Token Refreshes
e Failed Requests/Retries
(esp. transient network issues)
e Logging

Configure the client

from sierra ils utils import SierraAPI

client = SierraAPI(
base url=userdata.get('sierra api base url'),
client id=userdata.get('sierra api key'),
client secret=userdata.get('sierra api secret'),

)
The screenshot to the right demonstrates

installing the library, configuring and using 4 make a request

the client to make a request in Google response = client.request('GET', 'info/token')
Colab. response.raise for status()

*Further examples will use this library. <Response [200 200]>

http://github.com/chimpy-me/sierra-ils-utils

Anatomy of a Sierra REST API Request (Python Example)

A sample HTTP GET request on the "bibs/ endpoint ...

response = client.request(
"GET ', # The HTTP verb, or the operation of the request

'bibs/', # The endpoint itself
params are the "query parameters" of the HTTP request ...

params={
'fields': 'default,marc', # fields selected to appear in the response
2dt: M[1614568,]" ., # id and dates can have an open-ended range

‘updatedDate': f"[2020-01-01T00:00:00Z,{timestamp now}]", # date range*
‘limit': 2000, # 2000 is max limit offered by the API (50 is default)

Anatomy of a Sierra REST API Request (Cont'd)

The response to the HTTP request will return
an HTTP Status Code of 200 — OK, which
follows the HTTP standard.

The HTTP response body contains JSON text.
A portion of this text (syntax-highlighted and
pretty-printed) is shown on the right. It is the
serialized representation of the response
objects.

These response objects are defined as
"Resources" in the HTTP API specification. In
this case, the top-level resource is
BibResultSet.

Within the entries key, the response includes
an array of Bib resources, limited to the fields
specified in the request’s query parameters.

P PR RPRRPRRRPRRRR
O 00 ~NO0O U dWNPEP GV
<4 -

NN
= ®
<« <«

N
N

NN
B W
< < <4

NN
o Ul

v {
"total": 2000,
"start"s o,
"entries": [

OO\IO\U‘I-I&\NNF—‘
4 4«

{

"id": "1000001",

"updatedDate": "2021-10-07T13:52:27Z2",

"createdDate": "2012-06-19T22:48:06Z",

"deleted": false,

"suppressed": false,

"isbn": "©899080871",

“lans™:
"code":
"name":

“eng,
"English"
3
*tatle™:
"author":
"mare™: o

"leader": "0000Ocam 2200000 a 4500",

"Fields"™: [

{

"Water monsters :
"Garinger, Alan,

opposing viewpoints
1932-",

"100": {
"subfields": [
{
"a": "Garinger, Alan,"

X,

Anatomy of a Sierra REST API Request (Cont'd)

Notes About Dates/Range Syntax® in Query Params (techdocs.iii.com API Docs)

“Dates must match the date format of the property to be retrieved. In most cases, the
format is ISO 8601 combined date and time in UTC with Z (zero) offset. Some date
properties, such as catalogDate and deletedDate, are date only, with no time. Refer to the
bib object and item object descriptions and examples for more information.”

2013-12-10T20:30:00Z2 # exact
“Range syntax applies to dates and record IDs...start and end values are inclusive.”
[2024-01-01T00:00:00Z,2024-12-31T23:59:59Z] # inclusive dates

[2024-01-01T00:00:00%Z,] # open-ended date
[,1000054] # open-ended id

*See chimpy.me/iug-2025 for info on the SierraDateTime feature

https://techdocs.iii.com/sierraapi/Content/zAPIs/queryParameters.htm
https://chimpy.me/blog/posts/iug-2024/

Anatomy of a Sierra REST API| Request (Cont'd)

Notes About Pagination Query Params (techdocs.iii.com AP| Docs)

“...queries that include the offset parameter return results much more slowly than those
without the parameter. The preferred, more efficient method of harvesting data is to
use open ID ranges”

Paginating by id:

BN =

In the first request, start with i d=0
Extract the last record id from the result set
Add 1 to the last record id and set it to the next start id.
Loop until the system returns a page with fewer than the 1imit query parameter, or HTTP status code
of 404 — record not found. E.g.:

1imit=2000 # result set length of less than this means no more
records.

https://techdocs.iii.com/sierraapi/Content/zAPIs/queryParameters.htm

Anatomy of a Sierra REST API Request (Cont'd)

The Python code on the right
demonstrates the implementation of
pagination — harvesting all the filtered
records result sets from the bibs
endpoint for the records that match the
query parameters.

The loop continues making requests —
advancing the ID to the next largest
integer ID found in previous result sets
— until the length of the result set in
the response is less than the limit,
or ID not found (HTTP status code
404).

Get all bib record IDs updated on or after "2025-01-21°

start id = 0 # start at ID 0

start date = '2025-01-21T00:00:00Z"' # range is inclusive

limit = 2000 # 2000 is max limit offered by the API (50 is default)
records = [] # store the records' metadata in a list

while True:
try:
response = client.request(
'GET',
'bibs/",
params are the "query parameters" of the HTTP request ...
params={
'fields': 'id,createdDate,updatedDate’,
'id': f"[{start id},]1", # open-ended id
'updatedDate': f"[{start date},{timestamp now}]",
"limit': limit,
}
)
response.raise for status() # throw error on status 404, record not found
entries = response.json().get('entries', [])
records.extend(entries) # add the response records to the list
if not entries or len(entries) < limit:
break
start_id = int(entries[-1].get('id')) + 1 # advance the start id, loop

filter param

date range

except Exception as e:
print(f"{e}")
break

len(records) # e.g. 7077

Anatomy of a Sierra REST API Request (Cont'd)

working with an offset can be slow, we can use async to send requests in batcl

. . . # ... especially for endpoints that don't support
Not all endpoints support pagination inport asyncio
with an ID — e.g. patrons/holds el |
endpoint Only SUppOI’tS the holds = [] # list to store holds entries
. . async def get holds(limit=2000, offset=0):
llml tIOffset query params l)iesponseg= await client.async_request(

'GET " ;
'patrons/holds’',
params={'limit': limit, 'offset': offset,}

The PythOn COde On the rlght :'esponse.raise_for_status()

entries = response.json().get('entries', [])

demonstrates an asynchronous if entries:
. | t t f . t_ b return (response.json().get('total', 0), entries)
— else:
Implementation or pagination Yy S T
batChIng the requeStS aSynC1 We Can # get the initial number of holds, and the holds themselves
== . = total, first entries = await get holds(limit=1limit, offset=offset)
eff|C|ent|y bUIld the entlre Set Of holds.extend(first_entries) # add the first batch of holds
. . . offsets = range(limit, total, limit) # generate the ranges -- start,stop,step
holds |nstead Of Send|ng bIOCk|ng # create tasks for remaining batches (offset generated by range function)
) tasks = [get holds(limit=1limit, offset=offset) for offset in offsets]
- - results = await asyncio.gather(*tasks, return_exceptions=True)
requeStS One by One for result in results:

if isinstance(result, Exception):
print(f"Error: {result}")

else:
holds.extend(result[1])

print(len(holds), total) # list len and tot can differ due to changes w/ holds

Scripts You Can Use

Interactive Tutorial

Use case

How to train future systems librarians, or database concepts, or Sierra's data
structure when we can't permit direct database access to most staff

https://colab.research.google.com/drive/1IM1Dc9l0d-CgXzeJx7Otuk-6 XHojdJamX

API| Tutorial

MLN interactive API tutorial

Staff can learn while working with
a restricted set of endpoints
Bib and ltem Read only

Also learn some Python basics
without needing a local install

Does not use sierra-ils-utils in order

to demonstrate the OAuth process
more fully

C & Minuteman Sierra APl Tutorialipynb ¥ &

File Edit View

03X

Table of contents

@ Introduction

= I Authentication Example

Get /items/{id} example
o {id} pl
Get /items/{id} json practice
[]
Post Items/Query Example
Combining API Endpoints
Retrieving BibIDs
Combine bib and item APIs
Combined bibs and items output
Export Results (Final Script)
+ Section
<>
=)
[e=]
Get /items/{id} example
o

Get /items/{id} json practice
Post Items/Query Example
Combining API Endpoints
Retrieving BibIDs

Combine bib and item APIs

Combined bibs and items output

Export Results (Final Script)

+ Section

Insert Runtime Tools Help

+ Code + Text

1

B @

2, share

+ O

Connect ~

raco
2 The script begins with import calls to bring in various Python packages containing functionality needed by our script
=

4 import requests #package for placing HTTP requests

5 import json #package for working with JSON data

G ot

7 #Use config parser and a .ini file outside of Colab

8 import configparser

&) o6

10 from google.colab import userdata #Google colab function for accessing secrets

11 from pprint import pprint #package for pretty printing structured data such as JSON

12 from base64 import b6dencode #package for base64 encryption

13

14 e

15 Defining a function that will authenticate with the Sierra API and provide us with an access token to be used on subse
16 In this example it is returning some additional information we will later ignore for purposed of demonstration

T

18 def get_token():

19

20 #Use outside of colab

21 config = configparser.ConfigParser()

2 config.read(*api_info.ini")

23 base_url - config['api’]['base_url']

24 client_key = config['api'][’client_key'

25 client_secret = config['api']['client_secret']

2

27 base_url - userdata.get('api_base_url’)#creating variables to store the key/secret/url from Colab's secret enviro
28 client_key - userdata.get('api_key')

29 client_secret = userdata.get('api_secret’

30 auth_string = bbdencode((client_key + ':' + client_secret).encode(ascii’)).decode('utf-8')#encrypting the combine
31 header = {}

32 header[“authorization”] = ‘Basic * + auth_string #forming header to be included with HTTP call

33 url = base_url + '/token' #forming full url for the API endpoint used for authenticating the user

34 response = requests.post(url, headers=header) #Making a post request using the url and header and saving results
35 json_response = json.loads(response.text) #saving the response text to a JSON object

36 return json_response, response.headers, response.status_code #returns the json_response, response headers and sta
37

38 '

39 Defining a function called main for running the bulk of our script

41 def main():

. a v
42 #print selected fields from item and bib responses and a dividing line at the end
43 print('Call #: ' + item_details['callNumber'])

a4 print('Title ' + bib_details['title’])

45 print('Author : ' + bib_details[author'])

46 print('Barcode : ' + item details['barcode'])

47 print(’--- - - -

48

49 main()

2y Call #: 320.4 Favreau
Title : Democracy or else : how to save America in 10 easy steps
Author : Favreau, Jon, 1981- author.
Barcode 31213013011657
Call #: 618.928583 Turban
Title : Free to be : understanding kids & gender identity

Author : Turban, Jack L., author.
31213013012069

Barcode

Call FICTION Day

Title : One big happy family
Author : Day, Jamie, author.
Barcode : 31213013011087

Batch Update Callnumbers

Use case

Library's paperback Romance collection had call numbers with the structure
ROMANCE [First letter of last name]

Desired change to structure
ROMANCE [last name, first name]

Need to copy the 100|a from bibrecord into attached items

Batch Update Callnumbers (Cont'd

import json

from sierra_ils_utils import SierraAPI
import csv

import configparser

config = configparser.ConfigParser()
config.read('Y:\\SQL Reports\\creds\\api_info.ini")

.ini file contains url/key/secret for the api in the following form
[api]

base_url = https://[local domain]/iii/sierra-api/v6

client_key = [enter Sierra API key]

client_secret = [enter Sierra API secret]

base_url = config['api‘]['base_url'] + "/
#note sierra-ils-utils assumes base_url contains the trailing /, which the file I have been using did not contain so it
client_key = config['api’]['client_key"]

client_secret = config['api']['client_secret’]

sierra_api = SierraAPI(base_url,client_key,client_secret)
sierra_api.request('GET', "info/token")

<Response [200 200]>

with open(‘cam_romance.txt’,'r") as csv_file:
csv_reader = csv.DictReader(csv_file, delimiter=",")
for row in csv_reader:
print(row['RECORD #(ITEM)"]J[1:-1] + * ROMANCE * + row['10@|a’'].rstrip(’,"').rstrip(’."))
url = "items/' + row['RECORD #(ITEM)'][1:-1]
call_number = "ROMANCE ' + row['1@@|a‘].rstrip(",").rstrip(’.")
request = sierra_api.request(
‘PUT",
url,
json={
‘callNumbers’: [call_number]
3
)

request.raise_for_status()

https://github.com/Minuteman-Library-Network/batch-update-callnumbers/blob/main/cam%20romance.ipynb

Batch Update Callnumbers (Cont’d)

batch-update-callnumbers / cam_romance.txt (&

The library who requested this change
gathered up their items into a review
file, from which the record number, call
and 100|a fields were exported

Existing call # is not used in the script
and was simply included here as a
reference point

100]a requires some punctuation to be
removed

Record #'s need the record_type code
prefix and check digit to be removed

" jmgold init commit

(Code] Blame 1259 lines (1259 loc) - 58.9 KB

N o B W N e

[T e e i
[I B R L B e L U= N v]

[PB] ROMANCE M“,"

,"[PB] ROMANCE H","

[PB] ROMANCE E",*"
[PB] ROMANCE C",*
[PB] ROMANCE B","

,"[PB] ROMANCE B“,"
"[PB] ROMANCE B","

[PB] ROMANCE C","
[PB] ROMANCE S*,*

,"[PB] ROMANCE A",

[PB] ROMANCE R™,"
[PB] ROMANCE B“,"
[PB] ROMANCE 3J","

,"[PB] ROMANCE B","

[PB] ROMANCE L",*
[PB] ROMANCE A",

,"[PB] ROMANCE R","

"RECORD #(ITEM)","CALL #","100|a"
*i118869747","
1122255884 "
*i126593917","
*i127675425","
*1127712562","
*112855907x"
"i130296624",
*i130815986","
*i131080337","
*i132539652"
*1132799741","
*i133073361","
"i133097006","
*i133097855"
*113321543x","
*i13325625x","
"i133386855"

Mallory, Margaret,"

Higgins, Kristan."
Essex, Elizabeth."
Campbell, Anna."
Burrowes, Grace."
Burrowes, Grace,"
Boyle, Elizabeth."
Camp, Candace.™
Solheim, Tracy."
Alers, Rochelle.™
Ranney, Karen."
Burrowes, Grace."
Jordan, Sophie."
Beverley, Jo,"
Lin, Jeannie."

Ashe, Katharine,"

Roberts, Victoria."

Batch Update Callnumbers (Cont’d)
"RECORD #(ITEM)","CALL #","108|a"

For each row in the open csv file: ; :
2 "1118869747","[PB] ROMANCE M","Mallory, Margaret,"
e Extract record number to be used as s +1122255884%,*[PB] ROMANCE H",“Higgins, Kristan.
path parameter 4
o Use slice notion [1:-1] to
indicate the desired start and

"i126593917","[PB] ROMANCE E","Essex, Elizabeth."

endpoints of the record numMber i s cavebictresder(cav._file, deitnteer-,)
. . for row in csv_reader:
() ConStrUCt Ca”Number to |nC|ude N pr‘int(r.‘t-)w['RE(.:ORD #(ITEM)'][l:-l] - ROMANCE * + row['1@8@|a’'].rstrip(’,").rstrip(’."
h b url = ‘items/ .+ row[RFCORD #(]lITEH) 1[1:-1]. .y Iy
path object et e R G RRRG)
o Use rstrip() function to remove i,
. . json={
unwanted ending punctuation | eelim (el]
e Submit put request using the e
itemSI{id} endeInt 11886974 ROMANCE Mallory, Margaret
. . . 12225588 ROMANCE Higgins, Kristan
e Print details to screen to provide 12659391 ROMANCE Essex, Elizabeth

indicator the script is working

Correct Money Owed Discrepancies

Use Case

Roughly a dozen times a month a fine will be paid without correctly updating the
amt owed field for the patron record

Money Owed $6.99

[oreon o | creckou

Checked-Outlt.. 0

Barcode Title Due Date
Holds 0
Fines $6.99
Check In 0

Linked | check out 0 I Fines Reprint Bl Add Charge)l Fines Paid J Patron Notes

ComCa checked-Outit.. 0
Total: $0.00 Amount selected: $0.00

Holds 0
All Status Title Location Amount

I Fines $0.00

Check In 0

Linked Patrons 0

ComCat 0

Solutions

Can ask |l to correct via a "Repair discrepancy in Money Owed" Service
commitment

Alternately you can fix this yourself by adding a manual charge in that amount and
then waiving it

We wished to automate this task

Correct Money Owed Discrepancies (Cont'd)

Three functions are defined in the script el i R
Y runquery Wi” execute a provided Sql config.read('Y:\\SQL Reports\\creds\\api_info.ini'")
. . try:
query agalnst Slerra and return the Y cznn = psycopg2.connect(config['api']['connection_string'])
except:
query results | z;:::ﬁcz:::iiiZ:(;onnect to the database")
e manual_charge will create a manual b
charge by making a post request using ZECEZ:.ZXZZEZ;EZZZEJ&)
- - rows = cursor.fetcha
the patrons/{id}/fines/charge return rous
endpoint _ _
. . def manual_charge(patron_id,amount,location):
O ReqUIreS patron_ld’ amount’ and :gia:s":atrca)r:ziﬁ;t::p:igz:zid":e;ﬁzil’??sfgzzzgigl fine","location": location}
location fields to be provided e i el

e clear_fine will waive a fine by making @ aer cicar_fine(patron_id, invoicenuber):

. url = "patrons/" + patron_id + "/fines/payment"
PUT request USIng the params = {"payments": [{"amon(mt": 0, ;paymentType"; 2, "invoiceNumber": "" + invoiceNumber + '
t = si e t('PUT",url, json=
FdV/fi i heiiinet, pafac Apietatn ol B
patrons/il Ines/payment enapoin

Requires patron_id & invoiceNumber

https://github.com/Minuteman-Library-Network/SQL-Queries/blob/master/Scripted%20Reports/Correct%20Money%200wed%20Discrepancies.ipynb

Correct Money Owed Discrepancies (Cont'd)

Two SQL queries are defined
e Error_query finds patrons where
current owed _amt = SUM(fines)
e Manual _charge query finds the
manual charges created to reconcile
these errors

manual_charge() is run for each result
from error_query

clear_fine() is run for each result from
manual_charge_query

https://github.com/Minuteman-Library-Network/SQL-Queries/blob/master/Scripted%20Reports/Correct%20Money%200wed%20Discrepancies.ipynb

error_query = """\
SELECT
rm.record_num,

(p.owed_amt * 100 - (SUM(COALESCE(f.item_charge_amt*100, ©) + COALESCE(f.processing_fee_amt*100, ©) + COALESCE(f.billj

p-home_library_code AS location
FROM sierra_view.record_metadata rm
JOIN sierra_view.patron_record p

ON p.id = rm.id
LEFT JOIN sierra_view.fine f

ON f.patron_record_id = p.id

GROUP BY rm.record_num, p.owed_amt,3

HAVING p.owed_amt != SUM(COALESCE(f.item charge_amt, ©.08) + COALESCE(f.processing_fee amt, ©.00) + COALESCE(f.billing i

manual_charge_query = """\
SELECT
rm.record_num,
f.invoice_num::varchar
FROM sierra_view.fine f
JOIN sierra_view.record_metadata rm
ON f.patron_record_id = rm.id
WHERE f.assessed_gmt::DATE = CURRENT_DATE
AND f.charge_code = '1'
AND f.description = 'Residual fine'

#identify patrons with amt owed errors and create manual charges in the amount of those discrepancies
amt_owed_errors = runquery(error_guery)
for rownum, row in enumerate(amt_owed_errors):

manual_charge(str(row[0]),row[1],row[2])

#Find the newly created manual charges and waive them

fines_to_clear = runquery(manual_charge_query)

for rownum, row in enumerate(fines_to_clear):
clear_fine(str(row[0]),row[1])

Playing with Review Files

New endpoint with 6.3!

n Sierra 6.3 - Create a Review File endpoint

VOTE Idea Description
This idea is based in part on one submitted back in 2019 by Andy Helck.
Create an endpoint that will provide the list of records included in a specified
review file from Create Lists. | essentially envision this as the API version of
the bool_set SQL table.

Idea Value

This would provide outside systems the means of retrieving lists of titles that
staff maintain within create lists and can provide a means for services to
access data without having to work out how to create Json queries.

Mike Dicus (Product Manager, Innovative) shared this idea - Jan 4, 2024 - Report...

@ - Mike Dicus (Product Manager, Innovative) responded - Dec 17, 2024

Implemented in Sierra 6.3

Show previous admin responses (2)

6.3 is only loaded on Minuteman's test
server

Following slides are merely experiments
to test some possibilities

Get a list of review files

Iv6/reviewFiles/

Response Class
Model Mor

ReviewfFileInfo {
id (integer): the review file ID,
name (string): the name of the review file,
total (integer): the total number of entries in the review file,
recordType (string): the type of records (record IDs) stored in the review file,
username (string): the review file owner's username,
createdDate (string): the date and time the review file was created, in 150 8601 format (yyyy-MM-dd'T'HH:mm:ssZZ)

¥

Response Content Type | application/json v

Parameters
Parameter Value Description Parameter Type Data Type
recordType | Type of record in review files query string

N6/reviewFiles/{id}/records

Get a list of record identifiers belonging to a review file

Response Class
Model

ReviewFileContent {
total (integer, optional): the total number of record identifiers in the review file,
start (integer, optional): the starting position of this set of record identifiers,
entries (array[string]): the record identifiers in this set

H

Response Content Type [application/json v |

Parameters
Parameter Value Description Parameter Type Data Type
id [(required) | the review file ID path integer
limit ‘ ‘ the maximum number of query integer
record identifiers to return
offset [| the beginning (zero-indexed) of query integer

the result set returned

Export Review File
Assign a known file number to review _file

Make GET request to reviewFiles
endpoint containing metadata for all files
containing data

Filter response to entry with id =
review_file and extract the file name

Make GET request to
reviewFiles/{id}/records to retrieve all
bibs in file.

For each record make GET request to
bibs/{id} to pull out record fields.
Removing 'b' from start of each id

1 review_file = '647" #set review file number to export from. Must contains bibs

2

3 review_file_metadata = client.request(#retrieves all review files containing bibs
4 *GET";

5 "reviewFiles”,

6 params={

7 ‘recordType’: 'b’

8 ¥

223

10 data = review_file_metadata.json()
11 #reduce API response to just the entry matching review_ file # entered above

12 review_file_metadata = [entry for entry in data if entry['id’'] == int(review_file)]
13

14 print(review_file_metadata[@]['name’']) #pull out the review file's name from Sierra
15 prant(—---m s m e e)

16

17 review_file_list = client.request(#get list of records contained in review file

18 *GET 5

19 "reviewFiles/"+review_file+"/records™

20)

21

22 for entry in review_file_list.json()["entries"]: #retrieve bib fields for each record in file
23 title = client.request(

24 ZGET S

25 “bibs/"+entry[1:], #must remove first character containing the record_type_code
26 params={

27 ‘fields': 'title,author,isbn,materialType’

28 }

29)

30 print(’'Title: ' + title.json().get('title’,'')) #display record details, accounting for null values
31 print(’Author : ' + title.json().get('author',’'))

32 print("ISBN : " + title.json().get('isbn’, "))

33 print('MatType : ' + title.json().get('materialType’,’").get(value’, UNKNOWN'))

I L L e 5y

Title: Uprooted

Author : Novik, Naomi, author.

ISBN : 9780804179058

MatType : BOOK

Title: Hamster Princess : of mice and magic
Author : Vernon, Ursula, author, illustrator.

https://colab.research.google.com/drive/1gnt20SBwN6yLcq4Q4cPINeeVkBgXJK8L

Review File Alert inboxx ORI~ T v

m minuteman@minlib.net 1AM Bhoursago) Y €

tome ¥

84.0% of review files are currently used

(“ Reply > I(ﬁ Forward)\

Set review file total and
warning_percentage variables

Make GET request to reviewFiles to pull
list of all files containing data

Use len() to calculate # of files in use and
use to calculate review_file percentage

If review_file_percentage >=
warning_percentage, email out an alert
using the smtplib library

=1

b1

1 import smtplib

2 from email.mime.text import MIMEText

3

4 review_file_total = 652 #set total number of available review files in your system
5 warning_percentage = 80 #% of review files in use at which you will send an alert

6

7 review_file_list = client.request(#gather list of all review files containing data
8 *GET",

9 “reviewFiles"

10)

11

12 all_file_metadata = review_file_list.json()

13 files_in_use = len(all_file_metadata) #get count of files

14 review_file_percentage = round(files_in_use/review_file_total,2) * 100

15

16 print(str(files_in_use) + " of " + str(review_file_total) + " files are in use")
17 print(“Review file usage is currently " + str(review_file_percentage)+"%")

18

19 if review_file_percentage >= warning_percentage:

20 sender_email = userdata.get('email’)

21 sender_password = userdata.get('email_password’)

22 receiver_email = "jgoldstein@minlib.net"

23

24 message_text = str(review_file_percentage) + "% of review files are currently used”
25 message = MIMEText(message_text)

26 message["Subject”] = "Review File Alert”

27 message["From”] = sender_email

28 message["To"] = receiver_email

29

30 with smtplib.SMTP_SSL("smtp.gmail.com", 465) as server:

31 server.login(sender_email, sender_password)

32 server.sendmail(sender_email, receiver_email, message.as_string())
33 print("Email sent successfully!"™)

547 of 652 files are in use
Review file usage is currently 84.0%
Email sent successfully!

https://colab.research.google.com/drive/1qnt20SBwNG6yLcq4Q4cPINeeVkBgXJK8L

For More Information
https://chimpy.me/blog/posts/iug-2025/

Denyer, CO

ASCEND

Thank You

Questions?
Jeremy Goldstein - jgoldstein@minlib.net
Ray Voelker - Ray.Voelker@chpl.org

#IUG2025

