
Unlocking Sierra's REST APIs
Practical Python Projects for Libraries

Jeremy Goldstein - Minuteman Library Network

Ray Voelker - Cincinnati & Hamilton County Public Library

https://chimpy.me/iug2025

https://chimpy.me/iug2025

Meet Jeremy and Ray

Interacting with / Consuming Sierra Data

Sierra Data Feature →
Criteria ↓

Sierra SQL Sierra REST APIs Sierra Desktop
Application (SDA) /
Create Lists

Access Method Direct database access
using a PostgreSQL
compatible client (typically
via TCP/IP port 1032).
Username and password
required for authentication.

HTTP-based access through
predefined API endpoints;
requires no additional
network configuration
(typically via TCP/IP port
443 – the same port used by
the WebPAC). Access Token
required.

Access via the Sierra
Desktop Application (SDA)
interface, installed locally on
the user's workstation.
Account credentials needed.

Permissions Full read-only access to all
SQL views – no options to
limit or prevent access to
table views for clients with a
valid login.

Fine-grained permissions for
Create, Read, Update, and
Delete (CRUD) operations.
API keys can be created
with limited roles (Bibs
Read, Items Write, etc).

Permissions are based on
user roles and workflows
defined within the SDA
interface.

Interacting with / Consuming Sierra Data (Cont’d)

Sierra Data Feature →
Criteria ↓

Sierra SQL Sierra REST APIs Sierra SDA / Create
Lists

Available Data Current snapshot of all
record types. Transaction
data per local policy.
System config and user
information.

Current snapshot of all
record types-some only
accessible via pagination.
Current checkout/hold/fine
transactions

Current snapshot of all
record types-indirect current
transaction data when
associated with a record

Query Method SQL – Good ol’ SQL JSON (Query endpoint not
available for all data points)
and HTTP query
parameters.

Boolean and JSON.

Interacting with / Consuming Sierra Data (Cont’d)

Sierra Data Feature →
Criteria ↓

Sierra SQL Sierra REST APIs Sierra Desktop
Application (SDA) /
Create Lists

Learning Curve /
Audience

Steep, but manageable
learning curve for
non-technical users.

Moderate learning curve for
developers.

Minimal learning curve for
library staff.

Flexibility /
Primary Strengths

Highly flexible for reading
data and creating custom
reports–custom queries,
complex joins, aggregations,
and data manipulation
tailored to specific needs
and data-analysis related
tasks.

Highly flexible for defined
CRUD operations–provides
a limited set of endpoints
that are well-suited to
operations involving record
creation, updates and
deletion (e.g. less access to
data compared to SQL and
the SDA)

Limited flexibility–offers no
options for integration and
automation tasks (with the
exception of scheduler).
Suited to tasks involving
smaller, more manageable
datasets.

Getting started: Swagger UI

Swagger UI (Cont’d)

The screenshot on the right displays
the Swagger UI and the Response
Body for the GET Request on the
items/{id} endpoint.

Notes on Parameters:
Path Parameters: Specify resources within
the API – part of the URL path:
items/3000028

Query Parameters: Provide additional details
or options for the request – part of the URL
after ?:
items/3000028?fields=default

Body Parameters: The body param isn’t
used for this endpoint, but it’s often used in
POST and PUT operations.

Swagger UI (Cont’d)

A POST Request on the items/query
endpoint is shown on the right as it
appears in the Swagger UI.

The field labeled “json” represents the
body param of the POST request. This
is often referred to as the payload, or
simply JSON, in many HTTP clients.

Swagger UI (Cont’d)

A POST Request on the items/query
endpoint is shown on the right as it
appears in the Swagger UI.

The field labeled “json” represents the
body param of the POST request. This
is often referred to as the payload, or
simply JSON, in many HTTP clients.

For this items/query endpoint, the
JSON may be retrieved from the Sierra
Create Lists Function. By viewing the
Boolean Search feature of a list, the tab
labeled “JSON” will provide the
payload required by this endpoint.

Swagger UI (Cont’d)

A Delete Request on the
items/checkouts{barcode]
endpoint is shown on the right as it
appears in the Swagger UI.

Barcode is included as a required path
parameter

username and statgroup are optional
query parameters

Use delete endpoints with caution as
they lack confirmations and submitting
a valid request will delete the entry
immediately

Swagger UI (Cont’d)

A PUT Request on the
patrons/holds/{holdId} endpoint
is shown on the right as it appears in
the Swagger UI.

holdID is included as a required path
parameter

The body represents a patch object,
containing information that will overwrite
the data in the existing record if the API
is successful

In this instance the hold cannot be
frozen, thus a Response Code of 403
is returned along with an error message
in the Response Body

sierra-ils-utils
github.com/chimpy-me/sierra-ils-utils
A Python library designed to simplify
working with the Sierra REST APIs.

Automates:
● Authentication
● Token Refreshes
● Failed Requests/Retries

(esp. transient network issues)
● Logging

The screenshot to the right demonstrates
installing the library, configuring and using
the client to make a request in Google
Colab.

*Further examples will use this library.

http://github.com/chimpy-me/sierra-ils-utils

Anatomy of a Sierra REST API Request (Python Example)

Anatomy of a Sierra REST API Request (Cont’d)
The response to the HTTP request will return
an HTTP Status Code of 200 – OK, which
follows the HTTP standard.

The HTTP response body contains JSON text.
A portion of this text (syntax-highlighted and
pretty-printed) is shown on the right. It is the
serialized representation of the response
objects.

These response objects are defined as
"Resources" in the HTTP API specification. In
this case, the top-level resource is
BibResultSet.

Within the entries key, the response includes
an array of Bib resources, limited to the fields
specified in the request’s query parameters.

Anatomy of a Sierra REST API Request (Cont’d)
Notes About Dates/Range Syntax* in Query Params (techdocs.iii.com API Docs)

“Dates must match the date format of the property to be retrieved. In most cases, the
format is ISO 8601 combined date and time in UTC with Z (zero) offset. Some date
properties, such as catalogDate and deletedDate, are date only, with no time. Refer to the
bib object and item object descriptions and examples for more information.”

2013-12-10T20:30:00Z # exact

“Range syntax applies to dates and record IDs…start and end values are inclusive.”

[2024-01-01T00:00:00Z,2024-12-31T23:59:59Z] # inclusive dates
[2024-01-01T00:00:00Z,] # open-ended date
[,1000054] # open-ended id

*See chimpy.me/iug-2025 for info on the SierraDateTime feature

https://techdocs.iii.com/sierraapi/Content/zAPIs/queryParameters.htm
https://chimpy.me/blog/posts/iug-2024/

Anatomy of a Sierra REST API Request (Cont’d)
Notes About Pagination Query Params (techdocs.iii.com API Docs)

“...queries that include the offset parameter return results much more slowly than those
without the parameter. The preferred, more efficient method of harvesting data is to
use open ID ranges”

Paginating by id:
1. In the first request, start with id=0
2. Extract the last record id from the result set
3. Add 1 to the last record id and set it to the next start id.
4. Loop until the system returns a page with fewer than the limit query parameter, or HTTP status code

of 404 – record not found. E.g.:
limit=2000 # result set length of less than this means no more

records.

https://techdocs.iii.com/sierraapi/Content/zAPIs/queryParameters.htm

Anatomy of a Sierra REST API Request (Cont’d)
The Python code on the right
demonstrates the implementation of
pagination – harvesting all the filtered
records result sets from the bibs
endpoint for the records that match the
query parameters.

The loop continues making requests –
advancing the ID to the next largest
integer ID found in previous result sets
– until the length of the result set in
the response is less than the limit,
or ID not found (HTTP status code
404).

Anatomy of a Sierra REST API Request (Cont’d)
Not all endpoints support pagination
with an ID – e.g. patrons/holds
endpoint only supports the
limit/offset query params.

The Python code on the right
demonstrates an asynchronous
implementation of pagination – by
batching the requests async, we can
efficiently build the entire set of
holds, instead of sending blocking
requests one-by-one.

Scripts You Can Use

Interactive Tutorial

Use case
How to train future systems librarians, or database concepts, or Sierra's data
structure when we can't permit direct database access to most staff

https://colab.research.google.com/drive/1IM1Dc9l0d-CqXzeJx7Otuk-6XHojJamX

MLN interactive API tutorial

Staff can learn while working with
a restricted set of endpoints

Bib and Item Read only

Also learn some Python basics
without needing a local install

Does not use sierra-ils-utils in order
to demonstrate the 0Auth process
more fully

API Tutorial

Batch Update Callnumbers

Use case

Library's paperback Romance collection had call numbers with the structure

ROMANCE [First letter of last name]

Desired change to structure

ROMANCE [last name, first name]

Need to copy the 100|a from bibrecord into attached items

https://github.com/Minuteman-Library-Network/batch-update-callnumbers/blob/main/cam%20romance.ipynb

Batch Update Callnumbers (Cont’d)

The library who requested this change
gathered up their items into a review
file, from which the record number, call
and 100|a fields were exported

Existing call # is not used in the script
and was simply included here as a
reference point

100|a requires some punctuation to be
removed

Record #'s need the record_type_code
prefix and check digit to be removed

Batch Update Callnumbers (Cont’d)

For each row in the open csv file:
● Extract record number to be used as

path parameter
○ Use slice notion [1:-1] to

indicate the desired start and
endpoints of the record number

● Construct callNumber to include in
path object
○ Use rstrip() function to remove

unwanted ending punctuation
● Submit put request using the

items/{id} endpoint
● Print details to screen to provide

indicator the script is working

Batch Update Callnumbers (Cont’d)

Correct Money Owed Discrepancies

Use Case

Roughly a dozen times a month a fine will be paid without correctly updating the
amt owed field for the patron record

Solutions

Can ask III to correct via a "Repair discrepancy in Money Owed" Service
commitment

Alternately you can fix this yourself by adding a manual charge in that amount and
then waiving it

We wished to automate this task

https://github.com/Minuteman-Library-Network/SQL-Queries/blob/master/Scripted%20Reports/Correct%20Money%20Owed%20Discrepancies.ipynb

Correct Money Owed Discrepancies (Cont’d)
Three functions are defined in the script
● runquery will execute a provided sql

query against Sierra and return the
query results

● manual_charge will create a manual
charge by making a post request using
the patrons/{id}/fines/charge
endpoint
○ Requires patron_id, amount, and

location fields to be provided
● clear_fine will waive a fine by making a

PUT request using the
patrons/{id}/fines/payment endpoint
Requires patron_id & invoiceNumber

https://github.com/Minuteman-Library-Network/SQL-Queries/blob/master/Scripted%20Reports/Correct%20Money%20Owed%20Discrepancies.ipynb

Correct Money Owed Discrepancies (Cont’d)
Two SQL queries are defined
● Error_query finds patrons where

current owed_amt != SUM(fines)
● Manual_charge_query finds the

manual charges created to reconcile
these errors

manual_charge() is run for each result
from error_query

clear_fine() is run for each result from
manual_charge_query

Playing with Review Files

New endpoint with 6.3!

6.3 is only loaded on Minuteman's test
server

Following slides are merely experiments
to test some possibilities

https://colab.research.google.com/drive/1qnt20SBwN6yLcq4Q4cPlNeeVkBqXJK8L

Export Review File

Assign a known file number to review_file

Make GET request to reviewFiles
endpoint containing metadata for all files
containing data

Filter response to entry with id =
review_file and extract the file name

Make GET request to
reviewFiles/{id}/records to retrieve all
bibs in file.

For each record make GET request to
bibs/{id} to pull out record fields.
Removing 'b' from start of each id

https://colab.research.google.com/drive/1qnt20SBwN6yLcq4Q4cPlNeeVkBqXJK8L

Set review_file_total and
warning_percentage variables

Make GET request to reviewFiles to pull
list of all files containing data

Use len() to calculate # of files in use and
use to calculate review_file_percentage

If review_file_percentage >=
warning_percentage, email out an alert
using the smtplib library

For More Information
https://chimpy.me/blog/posts/iug-2025/

#IUG2025

Thank You
Questions?

Jeremy Goldstein - jgoldstein@minlib.net
Ray Voelker - Ray.Voelker@chpl.org

